Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes.

نویسندگان

  • G F Gaetani
  • H N Kirkman
  • R Mangerini
  • A M Ferraris
چکیده

The catalase within normal, intact human erythrocytes was completely inactivated with amino triazole. The rate of 14CO2 evolution, when the cells were subsequently incubated with 14C-labeled glucose, provided a measure of the rate at which NADPH was being oxidized by the glutathione peroxidase/reductase system for the disposal of H2O2. This rate was determined in control cells and in catalase-inactivated cells while the cells were exposed to H2O2, which was generated at various constant and predetermined rates by glucose oxidase. The results indicated that catalase handles approximately half of the generated H2O2. The glutathione peroxidase/reductase mechanism accounted for the other half. These results are in agreement with our earlier findings on erythrocytes of a subject with a genetic deficiency of catalase. However, an unexpected result with the present approach was the finding that the increased dependence on the glutathione peroxidase/reductase mechanism did not occur until greater than 98% of the catalase had been inactivated. The latter observation indicates that catalase and the glutathione peroxidase/reductase system function intracellularly in a manner very different from that previously ascribed to them. An explanation of the findings requires that the two methods of H2O2 disposal function in a coordinated way, such as a sequential action in which the glutathione peroxidase/reductase system is the rate-limiting step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes.

Purified enzymes were mixed to form a cell-free system that simulated the conditions for removal of hydrogen peroxide within human erythrocytes. Human glutathione peroxidase disposed of hydrogen peroxide (H2O2) at a rate that was only 17% of the rate at which human catalase simultaneously removed hydrogen peroxide. The relative rates observed were in agreement with the relative rates predicted ...

متن کامل

Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes.

Genetic deficiencies of glucose-6-phosphate dehydrogenase (G6PD) and NADPH predispose affected erythrocytes to destruction from peroxides. Conversely, genetic deficiencies of catalase do not predispose affected erythrocytes to peroxide-induced destruction. These observations have served to strengthen the assumption that the NADPH/glutathione/glutathione peroxidase pathway is the principal means...

متن کامل

تاثیر ورزش مستمر بر کاهش آسیب‌پذیری غشاء سلولی، وضعیت دفاع آنتی‌اکسیداتیو و استرس اکسیداتیو

    Background & Aim: The biological effects of potent oxidative agents in human body are under anti-oxidative control. Functional defects of organs may result from reactions of free radicals with the cell membrane. It is known that major targets of oxygen radicals are cell membrane lipids. Some reports indicate the role of peroxides in development of atherosclerosis. Human body tissues(eg.eryt...

متن کامل

Septage treatments to reduce the numbers of bacteria and polioviruses.

Disposal of the pumped contents of septic tanks (septage) represents a possible means of dissemination of enteric pathogens including viruses, since persistence of enteroviruses in septic tank sludge for greater than 100 days has been demonstrated. The risk of exposure to potentially infectious agents can be reduced by disinfecting septages before their disposal. Of the septage disinfectants ex...

متن کامل

Protection of L 1210 against Oxidant Challenge by Variously Treated Human and Murine Erythrocytes

Mammalian erythrocytes have large amounts of catalase, an enzyme which catabolizes hydrogen peroxide (H202). Because catalase has a low affinity for H202, others have suggested that glutathione peroxidase clears most H202 within the erythrocyte and that catalase is of little import. We hypothesized that erythrocyte catalase might function to protect heterologous somatic cells against challenge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 1994